我们引入 BMI (Body Mass Index)身体质量指数,即体重除以身高的平方来衡量二者的合理关系,并且通过吃、睡、练三个因子来衡量身高和体重的关系,因此我们需要三个参数和两个输出,明显线性回归是不够用的,神经网络就此诞生,顾名思义,神经网络模仿的是人脑结构,思考次数越多,也有可能越合理,三思而后行,加多加深思考的次数,即深度学习(我牵强附会乱说的,大家理解意思就好)
如前所述,AI 应用领域广泛,比如 Vitalik 所说的代码修正早已经投入使用,如果换个视角,Crypto 能为 AI 做的主要集中在非技术领域,比如去中心化的数据市场、去中心化的算力平台等等,去中心化的 LLM 有一些实践,但是要注意,用 AI 分析 Crypto 代码和区块链上大规模跑 AI 模型根本不是一回事,以及在 AI 模型中加一些 Crypto 因素也很难称得上是完美结合。
Crypro 目前还是更擅长生产和激励,异想天开用 Crypto 强行改变 AI 的生产范式则大可不必,这属于为赋新词强说愁,拿着锤子找钉子,Crypto 融入 AI 的工作流以及 AI 赋能 Crypto 才是合理选择,以下是我总结的比较可能的结合点:
无需多言,英伟达 RTX 4090 显卡是硬通货,目前的某个东方大国很难获得,但是更严重的是,个人、小公司和学术机构也遭遇了显卡危机,毕竟大型商业公司才是氪金玩家,如果能在自购、云厂商之外开辟第三条道路,很明显具备实际的商业价值,也就脱离了纯粹的炒作,合理的逻辑应该是“如果不用 Web3,则无法维持项目运作”,这种才是 Web3 For AI 的正确姿势。
数据之源:Grass 和 DePIN 汽车全家桶
Grass 由 Wynd Network 推出,Wynd Network是一个闲置带宽售卖市场,Grass 是一个开放式的网络数据获取和分发渠道,不同于单纯的数据收集和售卖,Grass 具备将数据清洗和验证功能,以规避越来越封闭的网络环境,不仅如此,Grass 希望能直接对接上 AI 模型,为其提供直接可用的数据集,AI 的数据集需要专业处理,比如大量的人工微调,以满足 AI 模型的特殊需求。
扩展一下,Grass 要解决数据售卖的问题,而 Web3 的 DePIN 领域能生产 AI 需要的数据,主要集中在汽车的自动驾驶上,传统上的自动驾驶需要对应公司自行积累数据,而 DIMO、Hivemapper 等项目直接运行在汽车之上,采集越来越多的汽车驾驶信息和道路数据。
人工智能可以分成人工标注和智能算法两部分,第三世界,如肯尼亚和菲律宾等地区负责人工标注等价值曲线最低的部分,而欧美的 AI 预处理公司拿走大头收入,进而出售给 AI 研发企业。
随着 AI 的发展,更多的企业盯上这部分业务,在竞争下数据标注的单价越来越低,该部分业务主要就是给数据打标签,类似识别验证码的工作,并无技术门槛,甚至有 0.01 元人民币的超低价。
在这种情况下,诸如 Public AI 等 Web3 数据标注平台也具备实际商业市场,链接 AI 企业和数据标注民工,使用激励体系取代单纯的商业低价竞争模式,但是要注意,Scale AI 等成熟企业的标注技术保证可靠的质量,而去中心化的数据标注平台如何控制质量,禁止撸毛党则是绝对刚需,本质上这是 C2B2B 的企业服务,单纯的数据规模和数量并不能说服企业。
硬件自由:Render Network 和 Bittensor
需要说明,跟比特币矿机不同,目前没有专用的 Web3 AI 硬件,现存的算力、计算平台都是成熟硬件叠加 Crypto 激励层改造而来,本质上可以归纳为 DePIN 领域,但是和数据来源项目有所区别,故按照 AI 工作流写在此处。
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin: “Attention Is All You Need”, 2017; arXiv:1706.03762.
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, Dario Amodei: “Scaling Laws for Neural Language Models”, 2020; arXiv:2001.08361.
Hao Liu, Wilson Yan, Matei Zaharia, Pieter Abbeel: “World Model on Million-Length Video And Language With RingAttention”, 2024; arXiv:2402.08268.
Max Roser (2022) - “The brief history of artificial intelligence: The world has changed fast – what might be next?” Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/brief-history-of-ai' [Online Resource]
An introduction to zero-knowledge machine learning (ZKML)
Understanding the Intersection of Crypto and AI
Grass is the Data Layer of AI
Bittensor: A Peer-to-Peer Intelligence Market
Preview
Dapatkan pemahaman yang lebih luas tentang industri kripto melalui laporan informatif, dan terlibat dalam diskusi mendalam dengan penulis dan pembaca yang berpikiran sama. Anda dipersilakan untuk bergabung dengan kami di komunitas Coinlive kami yang sedang berkembang:https://t.me/CoinliveSG
Tambahkan komentar
Gabunguntuk meninggalkan komentar Anda yang luar biasa…